On the forced oscillation of certain fractional partial differential equations
نویسندگان
چکیده
منابع مشابه
Oscillation of Solutions to Nonlinear Forced Fractional Differential Equations
In this article, we study the oscillation of solutions to a nonlinear forced fractional differential equation. The fractional derivative is defined in the sense of the modified Riemann-Liouville derivative. Based on a transformation of variables and properties of the modified Riemann-liouville derivative, the fractional differential equation is transformed into a second-order ordinary different...
متن کاملOn the Oscillation of Fractional Differential Equations
In this paper we initiate the oscillation theory for fractional differential equations. Oscillation criteria are obtained for a class of nonlinear fractional differential equations of the form D ax+ f1(t, x) = v(t) + f2(t, x), lim t→a+ J1−q a x(t) = b1, where D a denotes the Riemann-Liouville differential operator of order q, 0 < q ≤ 1. The results are also stated when the Riemann-Liouville dif...
متن کاملOscillation of certain higher-order neutral partial functional differential equations.
In this paper, we study the oscillation of certain higher-order neutral partial functional differential equations with the Robin boundary conditions. Some oscillation criteria are established. Two examples are given to illustrate the main results in the end of this paper.
متن کاملOscillation criteria of fractional differential equations
where D−y is the Liouville right-sided fractional derivative of order a Î (0,1) of y and h >0 is a quotient of odd positive integers. We establish some oscillation criteria for the equation by using a generalized Riccati transformation technique and an inequality. Examples are shown to illustrate our main results. To the best of author’s knowledge, nothing is known regarding the oscillatory beh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2015
ISSN: 0893-9659
DOI: 10.1016/j.aml.2015.05.016